
NXApp, Volume 1, Issue 3. Summer 1994. Copyright ã1994 by NeXT Computer, Inc.    All Rights 
Reserved.

Core Dump

written by    Julie Zelenski

GDB'S GREATEST HITS
Lurking beneath its old-style command interface, gdb has a lot to offer the 
developer. It's a great tool for observing a program in action, controlling the flow 
of execution, and changing behavior at run time. You can read the NEXTSTEP 
documentation to learn more about any of its features, and gdb itself has a 
comprehensive internal help system. But both of these information sources are 
organized as reference materialÐthey're perfect for looking up the details of 
commands as you need them, but somewhat less helpful for learning new 
commands or finding your way around in the infrastructure. 
For this issue's column, rather than focusing on gdb commands themselves I'd 
like to highlight the more useful support features of gdb that make debugging a 
more pleasant and manageable task. These are some of my techniques for making
the most of gdb and its support features. Also included are the gdb questions 
most frequently asked and bugs most frequently noticed.

Never ever leave gdb
My absolute favorite gdb support feature is the ability to recompile a project 
without leaving gdb, by simply typing make. After you remake your project, the 
next run causes gdb to notice the executable has changed and reload the symbol
table information. This saves the startup time that comes from entering and 
exiting gdb. More importantly, it also prevents you from losing the details of the 
current debugging session, such as all of your breakpoint settings and command 
and value histories. 



(gdb) make
cc -g -O -Wall -c MyApplication.m -o ./obj/MyApplication.o

... output from compile & link

(gdb) r
'/tmp/Test.app/Test' has changed, rereading symbols.
Reading symbols from /tmp/Test.app/Test...done.
Starting program: /tmp/Test.app/Test 

For more general shell needs, you can execute the shell commands within gdb by 
prefacing the desired shell command with the word shell.
(gdb) shell ls -l My*.[hm]
-rw-rw-r--  1 juliez       125 May 10 17:18 MyApplication.h
-rw-rw-r--  1 juliez       254 May 10 17:32 MyApplication.m

Less typing is always better
gdb's command-line reader is similar to that of csh in supporting Emacs-style 
command-line editing and a history mechanism with substitution. The left and 
right arrow keys move the cursor along the command line, and the basic Emacs 
commands are available to edit the text. If you already have Emacs command 
sequences wired into your fingers, this is great news. If you'd like to learn a few 
commands, refer to the gdb chapter of the NEXTSTEP Developer Tools book. 
gdb tells you that ªcommand name abbreviations are allowed if unambiguous,º 
but that isn't quite accurate. Most certainly, you can use any unambiguous prefix 
of a command: For example, you can distinguish display from other commands 
that begin with dis in just four letters, or type the three letters bre to uniquely 
identify break. But some ambiguous abbreviations are assigned to the most 
commonly used commands. For example, the very useful commands break, 
delete, run, continue, step, next, and print can be shortened to just the first 
letter. Save your poor overworked fingers a bit with these shortcuts. 



(Nevertheless, and contrary to what you might expect, longer ambiguous versions 
of these prefixes like co and de are not accorded the same special status.

By default, gdb keeps a buffer of the last 256 commands you've run, each 
identified by a number. Ask gdb to show commands to see the last 10 
commands you issued. At any time, you can repeat the last command verbatim by
simply pressing Return at the command prompt. You can also use the up and down
arrow keys to scroll up and down through the list of commands in your history, to 
choose one to edit or execute again. 
Another useful feature is that a wide range of history substitutions is available, so 
you can perform substitutions on previous commands and reexecute them. This 
makes it possible to repeat a command, execute the same command with 
different arguments or a different command with the same arguments, and fix 
typos in previous commands. See the csh UNIXâ manual page for the complete 
story on history substitutions. The most useful one to mention is using !br to 
retrieve the last command you executed that began with br. By default, history 
substitution is disabled, so you must set history expansion on to enable it.
The command history usually lists only the commands you have issued in the 
current session. However, you can enable saving across sessions by asking gdb to
set history save on. At the end of your session, gdb saves your command 
history to the file .gdb_history in the current directory; the next time you start up
gdb in that directory, that file is read to reestablish your history. 

Value history, printing, and convenience variables
gdb also maintains a value history for your session. This means that every 
expression you evaluate using the print command is assigned a value number in 
the history, like this:
(gdb) p self
$7 = (struct Application *) 0xbb5e4



You can refer to this value as $7 and use it in future expressions:
(gdb) p (char *)[$7 appName]
$8 = 0xb80cc "FunWithGDB"

Once a value is entered into the history it doesn't change: The value is stored as 
$7, not the expression that generated it. This means that $7 doesn't change to 
hold the new value of self when your program enters a different scope. 
Also, at any time, $ refers to the last value in the history and $$ to the next-to-
last value. 
The output command has the same semantics as the print command, but 
doesn't add the result to the value history and, for some unknown reason, doesn't 
end the line with a newline. You can use this difference to avoid cluttering the 
value history with unimportant results. For more sophisticated printing needs, gdb
provides a printf command similar to the C version that provides for formatted 
output. Like output, the results from printf are not entered into the value history.
One other handy printing feature added for Objective-C is the print-object 
command, which sends its argument the printForDebugger: method. The 
default implementation of this method, inherited from the Object class, simply 
prints out the class name and hexadecimal address of the object:
(gdb) po NXApp
<Application: 0xbb5e4>

However, you can override this method in your classes to provide more useful 
data about a given object at run time for debugging purposes. Compared to 
dumping the contents of the underlying struct, an implementation of 
printForDebugger: can print out just the information that is helpful and use a 
more readable format for presentation. (And in case you missed it, the example 
above also shows that you can abbreviate the command print-object to po!)



Any name that begins with a $ can be used as the name of a gdb convenience 
variable. These variables are implicitly typed and created at first reference. Use 
print to get the value of a convenience variable and the set command to set or 
change the value. You can set the value to any valid C or Objective C expression, 
including dynamically called methods or functions:
(gdb) p $list = [[List alloc] initCount:10]
$24 = 793052
(gdb) p $num = 1230 % 4
$25 = 2

All registers have convenience variables associated with them. The info registers
command dumps the contents of all registers so you can see the names 
associated with each register. The register convenience variables most often used 
are $fp, which holds the frame pointer, $sp for the stack pointer, and $pc for the 
program counter.

Creating your own commands
As you learn more gdb features, you may want to create shorthand aliases for 
commands or macros of common command sequences. The define command 
allows you to choose a name to be associated with a command or sequence of 
commands. These user-defined commands become fully integrated in gdb: They 
show up in Escape-completion lists of prefix matches, you need type only enough 
of the name to distinguish it from other commands, and the commands are listed 
in gdb's help system. You can even use the document command to enter 
documentation for your new addition; then this documentation is provided when 
you ask for help about the command.
(gdb) define mc
Type commands for definition of "mc".
End with a line saying just "end".
display NXMallocCheck()
end



(gdb) document mc
Type documentation for "mc".
End with a line saying just "end".
Turn on auto-display of call to NXMallocCheck to watch for heap corruption
end
(gdb) help mc
Turn on auto-display of call to NXMallocCheck to watch for heap corruption

One current deficiency of user-defined commands is that they don't take 
arguments. A somewhat convoluted way to get around this is to have the 
sequence of commands depend on the value of a convenience variable that you 
set prior to executing the command. This allows you to fudge a form of limited 
parameter passing.

Preferences
There are many gdb preferences that control editing, history, printing, and other 
behavior in the gdb environment. To see the full list of preferences available along
with their current settings, use the info set command: 

(gdb) info set
confirm:  Whether to confirm potentially dangerous operations is on.
prompt:  Gdb's prompt is "(gdb) ".
editing:  Editing of command lines as they are typed is on.
verbose:  Verbose printing of informational messages is on.
autoload-breakpoints:  Automatic resetting of breakpoints in dynamic code is on.
... 

Most of the default settings are the values you would want: Pretty printing is 
turned on for arrays and structures, command-line editing is enabled, and so on. 
Some command history preferences that you might want to change are history 
size, history save, and history expansion, which 
respectively control the size of the history buffer, whether history is saved across 
sessions, and whether history substitutions are enabled. 



Another preference setting you may want to change is the limit for print elements.
When you 
print an array or string using the print command, gdb prints elements only up to 
the limit specified by this preference. By default the limit is set to 200. You can 
raise or lower this as desired, or completely remove the limit by setting print 
elements to 0.

Initialization files
With your newfound knowledge of preference settings and user-defined 
commands, you may find you'd like to initialize your gdb environment on startup. 
A gdb initialization file, or .gdbinit
 file, consists of gdb commands as they would be typed to the command reader. 
When gdb starts up, it reads the commands from the file .gdbinit in your home 
directory, then the .gdbinit file 
from the current project directory, and finally from the system .gdbinit file in 
/usr/lib. 
Your personal .gdbinit file allows you to establish your desired preference settings
and define 
all-purpose commands. The project .gdbinit file is a good place to add dir path 
inclusions for subprojects and define any project-specific commands. 
The system .gdbinit file is not writable by an unprivileged user, but you can read 
it. If you do, you'll see that commands like showps and shownops are user-
defined commands that call 
functions from the Display PostScriptâ client library to turn tracing of PostScriptâ 
output on and off. Also, the flush command is defined as an NXPing-type call to 
synchronize the display with 
the PostScript commands that have been initiated. And two lesser-known 
commands defined in the system .gdbinit file, traceevents and tracenoevents,
enable and disable the printing of debugging information for each event received 
from the window server. 



Two gdb commands that are not user-defined but are convenient covers for 
functions are start-profile and stop-profile. Based on the monstartup and 
monitor function calls, these gdb commands allow you to selectively enable and 
disable profiling during the execution of an 
application. They allow you to dynamically determine which areas of the code you 
would like to profile and to dump each set of profiling statistics to its own separate
file.

THERE'S ALWAYS MORE
Did I leave out your favorite gdb trick? Don't keep it a secretÐdrop me a line and 
let me know what it is! 

Julie Zelenski is a member of the Developer Support Team, where she fields questions on many 
NEXTSTEP development topics. She loves to open her mailbox to find debugging tips and 
techniques to be shared with the community, so send them to her at julie@next.com!

Special thanks to Daniel Fish for his help with this article.

COMMONLY ASKED QUESTIONS ABOUT GDB

How can I suspend a program to allow time to attach to it?

The attach command allows you to hook up with and debug an already-running process. Say you need to 
explore misbehavior that surfaces only when your app is launched from the workspace, such as a problem 
handling the app:openFile: message. But you have a race condition between launching the app and getting 
gdb to attach before trouble starts. 

You can send your program a stop signal to suspend execution, to give you time to get to the debugger and 
attach. For the app:openFile: case, edit main() in your program and send this signal as the first instruction:

kill(getpid(),SIGSTOP); // like sending Ctrl-Z to your program, suspends it



This indefinitely suspends execution of the app. Once you attach in gdb, you can use continue to go on from 
there.

Why do variables seem to disappear in gdb?

To get complete information and better gdb performance while debugging, you should compile your program 
with the -g option or make the Debug target in Project Builder. However, it's possible to use gdb on nondebug
versions of your application, and even on programs that have been compiled with optimizationÐthat is, with cc
-O. This is helpful if a bug surfaces only in the optimized version, such as one of those evil memory smashers 
that behaves nondeterministically. 

However, debugging optimized code sometimes gives surprising results. Control flow may change due to loop
invariant statements being moved out of a loop body or common subexpressions being eliminated. The 
debugger may be unable to set or print the value of a given variable because it doesn't have the information 
necessary to find it. Variables may be moved into registers and two or more variables may share the same 
register when their live ranges don't overlap. Stack variables that never have their address taken and are 
used only across a very few instructions can ªdisappearº without a trace. You ask gdb to print such a variable 
and even though the source clearly shows it is in scope, gdb replies:

(gdb) print num
No symbol "num" in current context.
In this case, the info locals and info args commands will also report there is no record of the variable. No 
help there.

What to do? To ensure that a variable be available in the debugger even after optimization, declare the 
variable volatile.

What is this error message about ªprivileges disabledº?

One unfortunate interaction between gdb and setuid program execution surfaces when you attempt to debug 
a program that is setuid or forks setuid child processes. Within gdb, execution of setuid processes is not 
allowed. gdb will have trouble with an app that is setuid or one that attempts to fork a setuid program such as 
sendmail as a child process using system() or its relatives like popen() and execl() . If you try to debug a 
program like this, you'll get the error message ªsh: privileges disabled because of outstanding IPC access to 
taskº and the program or child process won't execute.

The technical explanation has to do with privileges and exception ports. When gdb is debugging a process, it 



owns the exception ports of that process. When that process forks a child process, gdb would own the 
exception ports of that child process as well. But, for security the kernel disallows gdb from owning the 
exceptions ports of a child process that is setuid. When you attempt this, the kernel generates the privileges 
disabled error message and the system() call fails.ÐJZ
__________________________________________________________________________________
Next Article  NeXTanswer #1995        Info Panel 
Previous article NeXTanswer #1996 Shrinkwrap Corner
Table of contents  
http://www.next.com/HotNews/Journal/NXapp/Summer1994/ContentsSummer1994.html


